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Dynamics and shape of bubbles on heating surfaces: A simulation study
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Abstract

The bubble shape on heating surfaces is simulated by numerically solving the Young–Laplace equation including a dynamic pressure
term. This dynamic pressure is calculated by a correlation involving several empirical coefficients. By adjusting these coefficients, a given
bubble shape can be well represented. Thus the pressure around the bubble and various forces acting on the bubble can be accurately
calculated. Some calculation examples are given. The results show an important effect of dynamic forces on the bubble shape. Therefore,
the assumption of spherical bubbles could lead to big errors in force evaluations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A growing bubble is dynamic in nature. The dynamics
manifests itself in the bubble interface. Therefore, bubble
dynamics can be studied by investigating bubble shapes.
The first-hand knowledge of bubble geometric data can
be measured through visualization experiments. These data
provide a rough knowledge of bubble dynamics and they
are useful in explaining the boiling phenomena and model-
ing the boiling heat transfer [1].

A simple (also rough) assessment of the relative impor-
tance of dynamic forces can be performed by using the
Rayleigh–Plesset equation [2]. Johnson et al. [3] explained
the different bubble shapes in terms of inertia and surface
tension forces, viz., for hemispherical bubbles the inertia
force is the dominant one; for spherical bubbles the surface
tension force is greater than the inertia force; for oblate
bubbles neither one of them is clearly dominant. However,
the Rayleigh–Plesset equation is applied to a spherical bub-
ble in an infinite domain of liquid, the unlimited use of this
equation (also seen in many models and analyses) is in
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question [4], because a growing bubble is generally not
spherical [4,5].

In a more sophisticated way, various forces acting on a
bubble, such as buoyancy, surface tension, inertia, drag,
contact pressure forces, etc., which cause the growth and
departure of the bubble, can be evaluated based on the
experimental bubble dynamics data [6–12]. This approach
is of great interest in formulating the correlations for the
bubble departure diameter under various conditions and
in investigating the bubble detachment condition. However,
the accuracy of this kind of evaluation seems to be rather
poor, since most of the calculation results give a relatively
big non-zero net force throughout the bubble lifetime.

Reverse to the approaches mentioned above, a bubble
shape can be predicted by modeling two-phase flow around
the vapor–liquid interface. A gas bubble growing on a sub-
merged needle or orifice has been subjected to intensive
investigations for several decades [4,5,13–15]. The accuracy
of model predictions has been improved consistently. How-
ever, the idealizations involved in each model limit the area
of applications.

Unlike a growing gas bubble, the vapor flow rate into a
growing bubble on a heating wall cannot be explicitly
known. The mechanisms of a bubble growing on a heating
wall are extremely complicated and are greatly influenced
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Nomenclature

a coefficient in bubble growth law R = atb [m/sb]
A area [m2]
A
*

area vector [m2]
b exponent in bubble growth law R = atb [–]
CV,CL constants in Eqs. (1) and (2) [Pa]
C1,C2,C3 coefficients in Eq. (10) [–]
CM added mass coefficient [–]
CS coefficient in Eq. (22) [–]
D bubble diameter [m]
F force [N]
g acceleration of gravity [m/s2]
ĝ g

*
=j g* j, unit vector in the direction of gravity [–]

h bubble height [m]
Ja qLCpDT/(hfgqv), Jakob number [–]
n1,n2 coefficients in Eq. (10) [–]
n
*

normal vector shown in Fig. 1 [–]
P pressure [Pa]
DP Laplace pressure drop [Pa]
DPD PD � PD0, dynamic pressure difference [Pa]
R bubble radius [m]
R0 principle radius at apex [m]
R1,R2 principle radii at any point [m]
rC radius of contact area shown in Fig. 1 [m]
S height of bubble mass center [m]
s arc length measured from apex [m]
DT wall superheat [K]
t time [s]
u velocity of the bubble mass center [m/s]

V bubble volume [m3]
w bubble width [m]
x horizontal coordinate shown in Fig. 1 [m]
y vertical coordinate shown in Fig. 1 [m]
y* h � y [m]
y** �(h � y) [m]

Greek symbols

b contact angle [deg]
h angle of inclination shown in Fig. 1 [deg]
q density [kg/m3]
Dq qL � qV, density difference [kg/m3]
r surface tension [N/m]

Subscripts

0 at apex of bubble
B buoyancy
CD drag
CP contact pressure
D dynamic
foot bubble foot (contact area)
int liquid–vapor interface
L liquid
LI liquid inertia
max maximum
ST surface tension
V vapor
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by the properties of fluid and wall and by working condi-
tions. Not until recent years, complete numerical models
of a single bubble growing on an isolated nucleation site
have been presented [16–19]. In these models, either a con-
stant apparent contact angle [16,17], or a truncated spher-
ical bubble [18,19] are assumed a priori, In fact, the bubble
shape can change dramatically during the growing process.
A truncated spherical bubble is a poor assumption in many
cases. The contact angle is dynamic during bubble growth
and is different from the static contact angle. Under these
assumptions, a good fit of a real bubble shape is difficult.
Since the Laplace pressure drop is very sensitive to the bub-
ble shape, a poorly simulated bubble interface indicates
that, the calculated flow field is not representative of the
real one.

In order to better understand boiling phenomena and
eventually model boiling heat transfer, a detailed descrip-
tion of a single bubble behavior is the first step. The
information of bubble dynamics obtained directly from
experiments is not sufficient. The analyses and models gen-
erally provide idealized (or even partially wrong) informa-
tion. Therefore, more efforts are needed to obtain the
‘‘real’’ information from real bubbles. This is the primary
motivation of this study.
The idea arises from the fact that a sessile bubble or a
pendent drop in the gravity field can be completely
described by the Young–Laplace equation [20,21], and that
a slowly growing bubble can also be simulated by the same
equation with good accuracy [22], Therefore, if a dynamic
bubble contour cannot be described by the Young–Laplace
equation, the dynamic effects are responsible for the differ-
ence. Thus a dynamic pressure term is assumed and added
into the Young–Laplace equation, so that the calculated
bubble contour exactly matches the real one. This is a
new approach to study bubble dynamics and to provide
the necessary information for comparing with model
predictions.

2. Model and numerical method

2.1. Young–Laplace equation

Fig. 1 shows schematically a bubble growing on a sur-
face heated from below. It is assumed that the bubble is
axisymmetric and the physical properties are constant,
especially, no surface tension gradient exists along the
interface. Therefore the Marangoni effect will not be con-
sidered. Also the tangential stress components on the inter-



Fig. 1. A bubble growing on a heating surface.
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face are neglected. The vapor and liquid pressures on the
sides of the bubble interface are given by

PV ¼ qVgy þ PDV þ CV ð1Þ
PL ¼ qLgy þ PDL þ CL ð2Þ

where PDV and PDL are the dynamic pressure of vapor and
liquid, respectively, which can be induced by inertia, drag,
vapor momentum, etc.; CV and CL, are constants taken as
references for hydrostatic pressures. The pressure variation
across the liquid–vapor interface is described by the
Young–Laplace equation, using Eqs. (1) and (2), as

PV � PL ¼ ðqV � qLÞgy � PD þ ðCV � CLÞ

¼ r
1

R1

þ 1

R2

� �
ð3Þ

where PD = PDL � PDV. R1 and R2 are local principle radii
of curvature. At y = 0: R1 = R2 = R0 and PD = PD0, the
dynamic pressure difference at the apex. Then from Eq. (3):

CV � CL ¼ 2r
R0

þ PD0 ð4Þ

By using Eq. (4), Eq. (3) is changed to

DP ¼ PV � PL ¼ r
1

R1

þ 1

R2

� �
¼ 2r

R0

� Dqgy � DPD ð5Þ

with Dq = qL � qV and DPD = PD � PD0, the dynamic
pressure difference in respect to the apex. DP is the Laplace
pressure drop, Dqgy is the hydrostatic pressure difference.

2.2. Numerical method

Using differential geometric relations, Eq. (5) can be
rewritten as:
DP ¼ r
dh
ds

þ sin h
x

� �
¼ 2r

R0

� Dqgy � DPD ð6Þ

dx
ds

¼ cos h ð7Þ

dy
ds

¼ sin h ð8Þ

where h is the inclination at any point (x,y) and s is the
length measured from the apex (Fig. 1). This is a system
of first-order differential equations which can be solved
numerically with the boundary condition given by

x ¼ y ¼ 0; h ¼ 0 ð9Þ
The Laplace pressure drop DP is expressed empirically as

DP ¼ 1þ C1 sin 2p 1� y
h

� �n1
� �� �� �

� 2r
R0

� Dqgy C2 � C3

y
h

� �n2
� �� �

ð10Þ

where h is the bubble height; Cb C2, C3, n1 and n2 are coef-
ficients which are used to adjust the calculated bubble
shape to fit the real one. Eq. (10) is not formulated based
on fundamental physics (which we think cannot lead to
an accurate simulation of bubble shapes in many cases),
rather it is mainly based on numerical tests. The basic idea
behind Eq. (10) is that, the dynamic pressure difference
DPD is a function of position (y/h). The value of DPD

can be related to that of the hydrostatic pressure. The first
term on the r.h.s. of Eq. (10) is mainly used to adjust the
curvature and the height of the mass center, the second
term is mainly used to adjust the diameter of the bubble
base and the curvature at the neck area. Eq. (10) may
not be the best possible correlation, but it enables us to
simulate bubbles of various shapes rather well.

A real bubble is simulated in a heuristic way. First the
bubble height h and bubble width w are used in the com-
puter program. The coefficients in Eq. (10) are set without
considering the dynamic effects (C1 = C3 = 0, C2 = 1, i.e.
DPD = 0). Before the calculation, the principle radius at
the apex R0 is assumed. Then Eqs. (6)–(10) are solved by
a fourth-order Runge–Kutta routine point by point with
increasing the arc length s by steps Ds until x reaches
the maximum xmax. If xmax is not equal to half of the real
bubble width (w/2), R0 is changed and the procedure is
repeated. Otherwise, the program goes on to the next step
until y equal the real bubble height h. Then the calculated
bubble contour is compared to the real one. If it does not
fit the real bubble contour, the coefficients in Eq. (10) are
changed and the calculation procedure is repeated until a
satisfying result is achieved. There is no numerical contour
criterion, but a visual comparison is made between calcu-
lated and observed contours.

From this calculation, the distributions of Laplace pres-
sure drop (DP) and hydrostatic pressure (Dqgy) are
obtained. The absolute dynamic pressure is not available,
while the dynamic pressure difference (DPD) can be calcu-
lated from Eq. (5).



1 Eq. (16) for the buoyancy force implies that the vapor pressure is equal
to the hydrostatic liquid pressure at the plane of the bubble base.
Therefore, a corrected force arises which is included in Eq. (18). But when
the dynamic forces cannot be neglected, this term actually also includes the
effects of dynamic force, therefore it is the ‘‘corrected buoyancy and
dynamic force’’.
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2.3. Forces acting on a bubble

The integration of Eq. (5) over the liquid–vapor inter-
face area (int) considering only the vertical direction, givesZ
int

DP dA
*

�ĝ ¼
Z
int

2r
R0

d A
*

�ĝ �
Z
int

Dqgy dA
*

�ĝ

�
Z
int

ðPD � PD0Þd A
*

�ĝ ð11Þ

where, d A
*

¼ n
*
dA with the normal vector n

*
taken inward,

and ĝ ¼ A
*

=j g* j is the unit vector in the direction of gravity.
Considering that the vapor phase is enclosed by the liquid–
vapor interface area and the bubble foot area (foot), Eq.
(11) changes toZ

int

DP n
* �ĝdA�

Z
intþfoot

2r
R0

n
* �ĝdAþ

Z
foot

2r
R0

n
* �ĝdA

þ
Z
intþfoot

Dqgy n
* �ĝdA�

Z
foot

Dqgy n
* �ĝdA

þ
Z
int

PD n
* �ĝdA�

Z
intþfoot

PD n
* �ĝdAþ

Z
foot

PD n
* �ĝdA¼ 0

ð12Þ

Combining the three terms involving integration over the
foot area, viz. the third, the fifth and the last term, and
using Eqs. (1), (2) and (4), givesZ
foot

2r
R0

� Dqgy þ PD0

� �
n
* �ĝdA

¼
Z
foot

DP jy¼h n
* �ĝdAþ

Z
foot

PDjy¼h n
* �ĝdA ð13Þ

Here DPjy=h and PDjy=h are the Laplace pressure drop and
the dynamic pressure difference at the triple contact line.
Combining Eqs. (12) and (13) and noting that the second
and the seventh terms in Eq. (12) equal zero, Eq. (12)
changes toZ

int

DP n
* �ĝdAþ

Z
intþfoot

Dqgy n
* �ĝdA

þ
Z
int

PD n
* �ĝdAþ

Z
foot

PDjy¼h n
* �ĝdA

� �

þ
Z
foot

DP jy¼h n
* �ĝdA ¼ 0 ð14Þ

The first term in Eq. (14) is the surface tension force (FST)
in the direction of ĝ which can be changed into an alterna-
tive form by using Eqs. (6) and (7):

F ST ¼
Z
int

DP n
* �ĝdA ¼ 2prrC sin b ð15Þ

where rC is the radius of the contact area and b is the con-
tact angle. The second term in Eq. (14) is the buoyancy
force (FB) in the direction of ĝ:

F B ¼
Z
intþfoot

Dqgy n
* �ĝdA ¼ �DqgV ð16Þ
The third term in Eq. (14) is the dynamic force (FD):

F D ¼
Z
int

PD n
* �ĝdAþ

Z
foot

PDjy¼h n
* �ĝdA

¼
Z
int

PD n
* �ĝdAþ pr2CPDjy¼h ð17Þ

which can be positive or negative. This force is the sum of
liquid and vapor inertia, drag and vapor momentum
forces, etc. The last term in Eq. (14) is the contact pressure
force (FCP) and it can be changed to

F CP ¼
Z
foot

DP jy¼h n
* �ĝdA ¼ �pr2CDP jy¼h ð18Þ

which is generally in the direction of �ĝ. This contact pres-
sure force is due to the pressure difference inside and out-
side of the bubble interface at the triple (contact) line and
acts over an area of the size of the contact area. It can also
be interpreted as a reaction force acting on the bubble [23].

This force was also called the ‘‘corrected buoyancy
force’’ [24],1 A similar procedure for deducing FCP was also
given in [6].

According to Eq. (14), the total force acting on the bub-
ble equates zero, viz.X

F ¼ F ST þ F CP þ F B þ F D ¼ 0 ð19Þ

After the simulation of a bubble, the forces acting on it can
also be calculated. Conventionally, the force which acts in
assisting the bubble detachment is taken as positive force,
i.e. acting in the negative y-direction.

3. Simulation examples

3.1. Bubbles growing on an enhanced tube

Enhanced surfaces have been widely used in industry.
Fig. 2 shows the cut-view of surface pores and sub-surface
channels of an enhanced tube (19.05 mm outer diameter;
for experimental set-up refer [25]). The growth of bubbles
on this kind of enhanced surfaces is mainly attributed
to the inflow of vapor from the sub-surface channels
[1,25]. This is similar to the gas bubbles growing from
submerged orifices connected to a gas chamber. Com-
pared to the bubbles growing on the smooth surfaces, the
bubbles are more dynamics-controlled for the enhanced
surfaces [25]. It is therefore of interest to study this kind
of bubbles.



Fig. 3. A bubble growing on enhanced surface (isobutane, TS = 283 K, PS = 2.17 bar, q = 2 kW/m2).

Fig. 2. Surface pores and sub-surface channel geometry for enhanced surface.
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Two typical contours of bubbles growing on the top sur-
face� of the enhanced tube with isobutane and propane as
working fluids are shown in Figs. 3 and 4, respectively.
The bubble interface including the neck region can be
described by Eq. (10). A better simulation requires a higher
resolution of the video pictures. For low resolutions, such
as for the small bubbles at the initial growth stage, a com-
parison between the simulated and the experimental bubble
shapes is difficult.

Fig. 5a–d show the distribution of the hydrostatic pres-
sure (Dqgy, left side of bubble contour) and dynamic pres-
sure difference (DPD, right side of bubble contour) around
the bubble.2 Dqgy increases continuously from the bubble
top to the bubble base and is much smaller than DPD espe-
cially for bubbles with higher aspect ratio (h/w). In most
cases, DPD is in the same direction as Dqgy. However,
DPD can be negative or positive.3 Negative DPD is found
at the lower part of the bubble at the initial growth stage
(Fig. 5a) and, more significantly, at the necking stage
(Fig. 5d). In both cases, the accelerating growth or rise of
the bubble induces a low liquid pressure area at the lower
part of the bubble.
2 The lines of pressure vectors in the figures are not evenly distributed
around the bubble contours. This is because the vectors were drawn for
given inclination angles with a constant interval. Therefore, at the place
where the inclination angle has little change, there is a bigger interval
between neighboring vector lines.
3 The positive hydrostatic pressure and dynamic pressure differences

counteract the expansion of the liquid–vapor interface, and are positive in
the direction from the liquid side to the vapor side.
Fig. 6a and b shows the calculated forces acting on the
growing bubbles shown in Figs. 3 and 4 by using the
method described in Section 2.3. During most of the bub-
ble lifetime, the only negative force (resisting detachment)
is the surface tension force which tends to zero when
approaching bubble detachment. The buoyancy force is
important at the later growth stage while the contact pres-
sure force is important at the early growth stage. Immedi-
ately after the bubble is initiated, the dynamic force is
negative for a very short time period which means the
ambient liquid tends to resist the rapid expansion of the ini-
tial bubble (only shown in Fig. 6a where a better quality of
video pictures of small initial bubbles is available). Then
the dynamic force turns gradually positive (pulling force)
and the bubble shows an elongated shape. This pulling
force first increases then decreases as the bubble keeps
growing. Finally it turns negative again when the bubble
undergoes the necking process and begins an accelerating
rise from the surface.

3.2. Bubbles growing on smooth planar surfaces

3.2.1. Moderate Jakob number

Fig. 7 shows the pictures of bubbles taken by Han and
Griffith [26]. The bubbles were generated on a horizontal
gold surface polished by No. 8 diamond compound with
degassed distilled water as working fluid. The Jakob num-
ber Ja is 48.7. The bubble shows a hemispherical or oblate
shape at the early growth stage then it changes to an elon-
gated shape as it is proceeding towards detachment. Five
bubble contours (at times t1–t5) of this growth sequence



-0.3 -0.2 -0.1 0 0.1 0.2

x (mm)

0

0.1

0.2

0.3

0.4

0.5

y*
(m

m
)

0.6

0.3

(b) t=1.56ms

20 Pa

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x (mm)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y*
(m

m
)

1.4
(d) t=7.78ms

-0.5 -0.3 -0.1 0.1 0.3 0.5

x (mm)

0

0.2

0.4

0.6

0.8

1

y*
(m

m
)

(c) t=3.78ms

-0.3 -0.2 -0.1 0 0.1 0.2
x (mm)

0

0.1

0.2

0.3

0.4

0.5

y*
(m

m
)

0.6

0.3

Hydrostatic
pressure

Dynamic
pressure

t=1.24ms(a) 

Fig. 5. Distributions of hydrostatic and dynamic pressure around bubbles on enhanced surface (y* = h � y). (a) Isobutane, TS = 283 K, PS = 2.17 bar,
q = 2 kW/m2. (b)–(d) Propane, TS = 293 K, PS = 8.36 bar, q = 6.5 kW/m2.

Fig. 4. A bubble growing on enhanced surface (propane, TS = 293 K, PS = 8.36 bar, q = 6.5 kW/m2).
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have been simulated and the calculated bubble contours
are also shown in Fig. 7.

The distribution of the pressure differences, Dqgy and
DPD, around the bubble is shown in Fig. 8. In general,
DPD is greater than Dqgy at the early growth stage, while
it is much less than Dqgy at the later growth stage. This
is quite different from the distributions shown in Fig. 5
for the enhanced surface, although the evolution of the
bubble shapes is similar for both cases. Fig. 9 shows the
forces acting on the bubble. The dynamic force acts to hold
the bubble on the wall at the early growth stage, then it
pulls the bubble to an elongated shape when the bubble
growth rate slows down, and finally it turns negative again
to counteract the accelerating rise of the bubble at the



Fig. 6. Forces acting on a growing bubble on enhanced surface. (a)
Isobutane, TS = 283 K, PS = 2.17 bar, q = 2 kW/m2. (b) Propane,
TS = 293 K, PS = 8.36 bar, q = 6.5 kW/m2.

Fig. 7. Bubble growing on a smooth plane surface [26] (water,
TS = 359 K, PS = 0.597 bar, DTW = 10 K, Ja = 48.7).

4 It is possible that there is a neck formed at the very small area of the
bubble base. In this case, 1/R1 is a very large positive value, and 1/R2 is a
small negative value. As a result, the Laplace pressure drop would be a
very big positive value in this small neck area which, according to [28], is
responsible for the liquid jet observed in [27,28].
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necking stage. The magnitudes of the dynamic pressure dif-
ference (Fig. 8) and the dynamic force (Fig. 9) indicate that
the bubble is more dynamics-controlled at the early growth
stage than at the later stage as it is quite well known for
bubbles growing on smooth surfaces [27].
3.2.2. Relatively high Jakob number

Fig. 10 shows the pictures of bubbles taken by Van Stra-
len et al. [27] under relatively high Jakob number
(Ja = 108). The bubbles were generated on a cylindrical
artificial nucleation cavity (diameter: 25 lm, depth:
100 lm) on the top face of a horizontal nickel-plated cop-
per rod with surface roughness within 0.2 lm. Water is
used as working fluid. Four calculated bubble contours
(at times t1–t4) are also shown in Fig. 10. Although the
upper part of the bubble just before detachment (at t4)
can be well simulated, the lower part cannot be simulated
by using Eq. (10) due to the very sharp change of the cur-
vature near the middle point of the bubble contour (indi-
cated by a solid arrow in Figs. 10 and 11). Thus the
values of (x,y) on the lower bubble contour are directly
taken from the picture and then fitted by a sixth-order
polynomial equation which is then used to calculate the
pressure differences.

Fig. 11 shows the distribution of pressure differences
around the bubble (the jump of DPD at the middle part
of the bubble at t4 is due to the non-smooth joint of the
two calculations for the upper and lower parts of the bub-
ble contour, as mentioned above). In general, Dqgy and
DPD have a similar magnitude, but act in different direc-
tions. Just before detachment (at time t4), the Laplace pres-
sure drop is negative at the lower part of the interface
which means the liquid pressure is higher than the vapor
pressure, especially near the contact area where the abso-
lute value of DPD is small.4

Fig. 12 shows the forces acting on the growing bubble.
The dynamic force is found important throughout the bub-
ble lifetime and acts in such a way that the bubble is kept in
a hemispherical or an oblate shape.

4. Discussions

4.1. Dynamic effects

The simulation results show an important role of
dynamic effects on a growing bubble. This can be demon-
strated by comparing simulated bubble shapes with and
without considering the dynamic pressure term as shown
in Fig. 13a and b. In Fig. 13a, for a (relatively big) spherical
bubble growing on the bottom surface of the enhanced
tube, if the dynamic effects are not considered, and if the
observed bubble width and bubble base diameter are taken,
then the simulated bubble height would be smaller than the
observed one, namely, the bubble would actually show an
oblate shape due to the upward buoyancy force. Therefore,
for this relatively big spherical bubble, the surface tension
force does not necessarily dominate as stated in [3],



-2.5 -1.5 -0.5 0.5 1.5 2.5

x (mm)

-1

0

1

2

3

4

y*
 (

m
m

)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x (mm)

-1

0

1

2

3

4

y*
 (

m
m

)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x (mm)

-1

0

1

2

3

4

y*
 (

m
m

)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x (mm)

-1

0

1

2

3

4

y*
 (

m
m

)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x (mm)

0

1

2

3

4

5

y*
 (

m
m

)

t1 t2

t3

t4
t5

Hydrostatic
pressure Dynamic

pressure

50 Pa

Fig. 8. Distributions of hydrostatic and dynamic pressure for bubble shown in Fig. 7 (water, TS = 359 K, PS = 0.597 bar, DTW = 10 K, Ja = 48.7).

Fig. 9. Forces acting on the growing bubble shown in Fig. 7 (water,
TS = 359 K, PS = 0.597 bar, DTW = 10 K, Ja = 48.7).
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However, for a small spherical bubble, where the surface
tension force is dominant, the bubble shape can be well
simulated without considering the dynamic effects (not
Fig. 10. Bubble growing on a smooth surface (top side of a rod) [27] (water,
shown). For an elongated bubble, as the one shown in
Fig. 7 at time t5, if the dynamic effects are not considered,
the simulated bubble does show an elongated shape due to
the upward buoyancy force, but it has a much bigger con-
tact area than the real one (the bubble height and bubble
width are kept the same) (Fig. 13b).

4.2. Bubble shapes and dynamics

Johnson et al. [3] classified three kinds of bubble shapes,
viz., spherical, hemispherical and oblate bubbles. Besides
these three kinds of bubble shapes, the elongated bubble
is another important bubble shape for boiling on heating
walls. Fig. 14 shows the evolution of bubble shapes during
growth in terms of aspect ratio (here defined as h/w) against
dimensionless growth time (t/td). Since there is a contact
area between the bubble and the wall, a seemingly spherical
bubble does not have an aspect ratio of unity. A bubble
which detaches in an oblate shape shows initially a hemi-
TS = 339.6 K, PS = 0.267 bar, DTW = 14.6 K, q = 53.2 kW/m2, Ja = 108).
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Fig. 11. Distributions of hydrostatic and dynamic pressure for bubble shown in Fig. 10 (water, TS = 339.6 K, PS = 0.267 bar, DTW = 14.6 K,
q = 53.2 kW/m2, Ja = 108).

Fig. 12. Forces acting on the growing bubble shown in Fig. 10 (water,
TS = 339.6 K, PS = 0.267 bar, DTW = 14.6 K, q = 53.2 kW/m2, Ja = 108).

5 For a bubble growing on a smooth surface, the vapor momentum force
is generally negligible. For example, for the bubble shown in Fig. 10 at
time t1, the maximum pressure on the interface induced by vapor
momentum is 0.15 Pa, which is very small compared with the other
pressure terms (Fig. 11). Therefore, for bubbles growing on smooth
surfaces, the vapor momentum force is generally not considered.
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spherical shape and then changes to an oblate shape. A
bubble which detaches in a relatively spherical shape shows
initially a hemispherical or oblate shape for a very short
period, then it changes to a spherical shape [25]. A bubble
which detaches in an elongated shape changes from a hemi-
spherical shape at the very beginning to an oblate, spheri-
cal, then to an elongated shape and, finally a neck is
formed, which generally can be clearly seen, and then the
bubble breaks away.

A pattern (shape) map of bubbles can be possibly devel-
oped by relating the aspect ratio (h/w) to the ratio of
dynamic and buoyancy forces FD/FB, Fig. 15a. The rela-
tionship between FD/FB and dimensionless growth time
(t/td) is shown in Fig. 15b. The results can be summarized
as follows:
• Both hemispherical h/w < �0.7) and oblate bubbles

(�0.7 < h/w < �0.9) occur at FD/FB < �1, which means
that the dynamic force resists the expansion of the bubble
and is more important than the buoyancy force, espe-
cially at the early growth stage (Fig. 15b), the (liquid)
inertia-controlled stage [27]. For the water vapor bubble
shown in Fig. 15 for Ja = 108, the liquid inertia force is
important throughout the whole growth period. This is
a kind of so-called ‘‘Rayleigh’’ bubble [27]. The negative
dynamic pressure difference DPD is big at the lower part
of the bubble interface (Fig. 11). This local depression
was thought to be partially responsible for the rapid gen-
eration of a secondary vapor column or bubble right
after the departure of a ‘‘Rayleigh’’ bubble [27,29].

• For elongated bubbles (h/w > �0.9), FD/FB is generally
positive (except during the necking period); which means
that the dynamic force acts in the same direction as buoy-
ancy force. For the bubbles growing on the enhanced
tube (at relatively high pressure), FD/FB can be much
higher than unity for h/w < 1.1. In this case, the vapor
momentum force plays an important role. For example,
for the bubble shown in Fig. 4 at time 7.78 ms, the vapor
velocity through the surface pore (about 0.2 mm in
diameter) is about 2.5 m/s which induces a maximum
pressure on the interface of about 56 Pa (1/2qvuv

2),5

while the hydrostatic pressure difference is less than



Fig. 13. Comparison of simulated bubble shapes with and without considering dynamic effects. (a) Bubble growing on the bottom surface of enhanced
tube (propane, TS = 283 K, q = 9 kW/m2; y** = y � h). (b) Bubble growing on a smooth surface (at the time t5 in Fig. 8).

Fig. 15. (a) The ratio of dynamic and buoyancy forces against aspect
ratio; (b) the ratio of dynamic and buoyancy forces against dimensionless
growth time.

Fig. 14. Evolution of bubble shapes during growth.
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10 Pa (Fig. 5d). The actual vapor velocity on the inter-
face might be much lower due to the velocity decay
[15]. The effects of vapor momentum on (elongated) bub-
ble shapes have also been demonstrated for gas bubbles
growing from a submerged orifice, at least for relatively
high pressure [13,15]. However, the liquid inertia force
can also act in the same direction as the buoyancy force
to pull the bubble to an elongated shape. This can be seen
from the data for the bubble growing on the smooth sur-
face at Ja = 48.7 (Fig. 15), the positive dynamic force
(FD) is attributed to the liquid inertia force, since in this
case the vapor momentum and the viscous drag can be
neglected.

• During the necking period, although the bubble still
shows an elongated shape, FD/FB lies between 0 and
�1 (Fig. 15). The negative dynamic force arises from
the big negative DPD at the lower part of the bubble
(e.g. Fig. 5d). This low local pressure of the bubble base
is induced by the accelerating rise of the bubble. A sim-
ple potential flow theory presented in [29] also shows
that, as a sphere accelerates from rest on a horizontal
wall, at the point at which the sphere was originally rest-
ing, the pressure suffers a sharp decrease below the
ambient. Thus, for elongated bubbles, the point where
the dynamic force changes from positive to negative
can serve as a criterion for bubble departure (Fig. 15b).

When the data are plotted as FP/FST against h/w, no sim-
ple relationship can be found. Thus, the explanation of dif-
ferent bubble shapes in terms of relative importance of
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inertia and surface tension forces [3] is not supported by the
present study. Note that the forces calculated in the present
study are in the vertical direction. The surface tension force
is actually the local force on the contact line which cannot
be related to bubble size directly, rather, it is strongly influ-
enced by the contact area and contact angle. Since the
deformation of a bubble is greatly related to its size, there-
fore, the buoyancy force, which represents the size of a
bubble, can be used to form a dimensionless group (e.g.
FD/FB) to represent such a deformation. In fact, the forces
acting on a bubble are generally evaluated by assuming
spherical bubbles (such as using the Rayleigh–Plesset equa-
tion [2]) or using an equivalent diameter. The use of this
method for determining the relative importance of various
forces on the bubble shapes is dubious as it has been
pointed out in [4].

4.3. Spherical assumption and force evaluations

Traditionally, the various forces acting on a growing
bubble on a heating wall are evaluated by using theoretical
or semi-theoretical equations based on the assumption of
spherical bubbles [2–5,9–11]. Experimentally, the assump-
tion of spherical bubbles or spherical bubble segments is
necessary when some bubble geometric parameters are
unable or difficult to be obtained by direct measurement,
such as the radius of curvature which is needed for calculat-
ing the contact pressure force. In this case, an equivalent
diameter based on the measured bubble volume is generally
used. Theoretically, for evaluating the hydrodynamic
forces, the assumption of spherical bubbles is unavoidable
according to Buyevich and Webbon [30], since analytical
expressions for the case of an arbitrary bubble interface
represent an insurmountable task [30]. Even for a spherical
segment, formidable hydrodynamic problems would arise
as noted in [30] (refer also [31]).

In fact, a growing bubble on a heating wall is generally
non-spherical in shape. In this case, while the spherical
bubble assumption does not influence the buoyancy force,
it directly leads to inaccurate evaluation of the contact
pressure and surface tension forces which are generally
important for a sessile bubble. Furthermore, the hydrody-
namic forces could be also greatly influenced by this
assumption, since these forces depend very much on the
bubble shape [32]. This is clear because the local radial
velocities of the bubble interface, which define the evolu-
tion of the bubble shape, strongly affect the added mass
force, the viscous drag force and the gas momentum force
[4,33]. For nucleate boiling on a plane wall, the gas
momentum force and the drag force can generally be
neglected [10,31,34]. Thus the dynamic force defined in this
paper comprises essentially the added mass force. The
impact of the spherical bubble assumption on the evalua-
tion of this force will be further discussed.

For an expanding bubble moving in an otherwise quies-
cent liquid, the added mass force or the inertia force of the
entrained liquid, FLI, can be given by [35].
F LI ¼ � dðCMqLVuÞ
dt

ð20Þ

here, V is the bubble volume, CM is the added mass coeffi-
cient and u is the velocity of the bubble mass center. The
shape dependency of FLI can be seen by the values of
CM. For example, based on the potential flow calculations,
the added mass tensor for a sphere in an unbound fluid is
quite different from the two diagonal added mass tensors
for an ellipsoid [36]. Rehm [11] referred CM as a shape fac-
tor. For a growing spherical bubble tangent to a plane wall,
u can be given as dR/dt, CM is generally taken as 11/16 (for
the motion of a sphere with a plane wall present [36]).
Further assuming that the bubble growth law follows the
form R = atb (for boiling on heating walls), then Eq. (20)
changes to

F LI ¼ � 4

3
pCMqLR

2 R
d2R
dt2

þ 3
dR
dt

� �� �

¼ � 11

12
pqLa

4bð4b� 1Þt4b�2 ð21Þ

Eq. (21) shows that, throughout the whole growth period,
FLI can be either positive or negative, depending on the va-
lue of the exponent b. However, following the discussions
in Section 4.2, the liquid inertia force for a bubble detached
in an elongated shape can change its sign throughout the
growth period (refer Fig. 9). It is also noted by Witze
et al. [37] that the momentum imparted to the liquid while
the bubble is growing rapidly will tend to pull the bubble
from the wall after growth has slowed down. This means
that the exponent b is not constant throughout the growth
period, rather it is generally higher at the initial stage than
at the later stage. For example, the experimental results for
propane bubbles growing on a smooth tube show that b

ranges from 0.61 to 0.75 for the initially inertia-controlled
stage, and for the diffusion-controlled stage it ranges from
0.23 to 0.42 [25]. The direct applications of Eq. (21) are fre-
quently seen in the literature, e.g. [12]. However, when the
bubble volume and the height of mass center are fitted from
measured data and using Eq. (20), the calculated FLI can
change its sign during the growth period [10,11]. The above
discussion also confirms that the liquid inertia force is very
sensitive to the bubble geometric parameters, viz. the bub-
ble shape.

Equations with a similar form as Eq. (21) can be found
in the literature [7,8,37,38]. Based on the formulation for a
hemispherical bubble expanding in an inviscid liquid [6],
Zeng et al. [7] expressed the so-called ‘‘bubble growth
force’’ for a bubble growing on a wall during pool boiling,
as

F LI ¼ �pqLR
2 R

d2R
dt2

þ 3

2
CS

dR
dt

� �2
" #

ð22Þ

Here, CS is an empirical constant accounting for the pres-
ence of a wall and for the non-sphericity of the bubble. It is
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taken as 20/3 in [7]. Helden et al. [8] also used Eq. (22) for
studying bubble detachment in a flow along a vertical wall
with CS taken as 0.6. By using a growth law of R = atb with
b = 0.5, a comparison of different expressions for FLI is
listed in Table 1.

The analytical solution given by Eq. (25) was confirmed
by another theoretical analysis [39]. The coefficient in Eq.
(25) (�0.29) is clearly different from that in Eq. (23)
(�0.458), however, it is close to the coefficient in Eq. (24)
(�0.333) for a sphere in an unbound fluid. Eqs. (26) and
(27) have dramatically different coefficients (�2.25 and
0.025, respectively) which are also quite different from the
coefficients in Eqs. (23)–(25). As expected from Eqs. (26)
and (27), the calculation results from [8] show a negligible
FLI. However, from [7], FLI is the only force which counter-
acts the buoyancy force for bubble detachment during pool
boiling, based on which the departure diameters were
predicted.

The comparisons of the experimental and predicted
departure diameters given by Zeng et al. [7] show that,
the agreement is the best for sub-atmospheric pressure with
a mean deviation of 10%. For atmospheric and elevated
pressures, the deviations are 15% and 26%, respectively.
The big deviation for elevated pressure is a direct result
of the low bubble growth rate, namely the low value of b
(from 0.26 to 0.38), as noted in [7]. In fact, for this case,
FLI based on Eq. (22) cannot represent the overall dynamic
force acting on the bubble, rather, it is smaller than the lat-
ter. As we discussed in the former sections, in case there is a
necking process during bubble detachment, an additional
inertia force arises in response to the accelerating rise of
the bubble, and this force has no direct relationship to
the bubble growth rate. This is possibly the case for bubble
growth under atmospheric or elevated pressures when the
bubble shows an elongated shape. Under lower pressure
(higher Jakob number), the bubble growth rate can be
dominantly inertia-controlled (indicated by an oblate or
hemispherical bubble shape). Thus the dynamic force cal-
culated based on the bubble growth rate is dominant,
and the other effects can be neglected. Thus, the accuracy
of the predicted departure diameters is actually related to
the shapes of the bubbles at the detachment.

Finally, the main physics behind the predictions in [7],
namely, the existence of a (single dominant resistant) force
heavily depending on bubble growth rate at the moment of
Table 1
Comparison of the expressions for FLI using the growth law R = atb with b =

Ref. FLI Eq. no.

Eq. (21) �0.458pqLa
4 (23)

Eq. (21) �0.333pqLa
4 (24)

[37] �0.29pqLa
4 (25)

[7] �2.25pqLa
4 (26)a

[8] 0.025pqLa
4 (27)a

a Note that the coefficients in Eqs. (26) and (27) are different from those given
coefficient a) were taken from the experimental data in these two references.
bubble detachment, is questionable, given the fact that, at
the same time, the surface tension and the contact pressure
forces were neglected based on the argument that the bub-
ble has no connection to the wall at the moment of detach-
ment [7]. In fact, Helden et al., [8] pointed out that the
constant CS = (20/3) given by Zeng et al. [7] is too large.
If Eq. (27) (with CS = 0.6) were used for Zeng et al.�s pre-
dictions, the ‘‘bubble growth force’’ would be essentially
zero.

From above, it is clear that the accurate evaluation of
the liquid inertia force is very difficult in engineering prac-
tice. Rehm [11] acknowledged a big error in evaluating the
liquid inertia force. In fact, different values of CM and dif-
ferent expressions of u were adopted in the literature using
Eq. (20) [9–12,38,40,41], some of them are without theoret-
ical background. For calculating the drag force, ‘‘ there
exist various correlations for the drag coefficient and also
various expressions for the bubble velocity. In [34] the drag
is omitted ‘‘purposefully’’, based on the argument that
there is no wake behind a bubble attached to a wall and
therefore no drag. The error in such a force evaluation
can also be caused by the inaccurate measurement of bub-
ble geometric parameters.

In general, a big non-zero net force results from using
traditional methods in evaluating various forces. In con-
trast, the new method presented in this paper has a clearer
theoretical approach, and depends less on the experimental
data. Therefore, it provides a more reliable means to eval-
uate the magnitude of various forces acting on a bubble
which cannot be measured directly by using the measure-
ment technologies available to date.

5. Summary and conclusions

A novel method has been developed to simulate existing
bubble shapes by solving the Young–Laplace equation
numerically considering the dynamic effects of bubbles
growing on heating surfaces. A dynamic pressure term is
added into the Young–Laplace equation which is a func-
tion of the local position of the liquid–vapor interface,
and is calculated by a correlation involving several empir-
ical coefficients. By adjusting these coefficients, a given
bubble shape can be well simulated. From this simulation,
the distributions of the Laplace pressure drop, the hydro-
static pressure and the dynamic pressure difference around
0.5

Comments

CM = 11/16, sphere with the presence of a plane wall
CM = 0.5, sphere in unbound fluid
Analytical solution for a sphere tangent to a plane wall
Empirical expression for bubble detachment during pool boiling
Empirical expression for bubble detachment at a vertical wall

in [7] and [8], respectively, since the values of the exponent b (and also the



Y. Chen, M. Groll / International Journal of Heat and Mass Transfer 49 (2006) 1115–1128 1127
the bubble can be calculated, and the various forces acting
on the bubble can also be accurately determined.

Some calculation examples have been shown for bubbles
growing on smooth and enhanced heating surfaces under
various conditions. The results show that, (1) a growing
bubble undergoes a series of shape changes, viz. spherical,
hemispherical, oblate and elongated bubbles, until the
detachment stops this evolution; (2) the dynamic force
greatly influences the bubble shape even for a seemingly
spherical bubble (except for micro spherical bubble); (3) a
pattern (shape) map of bubbles can be developed by relat-
ing the aspect ratio to the ratio of dynamic and buoyancy
forces; (4) for elongated bubbles, the point where the
dynamic force changes from positive to negative can serve
as a criterion for bubble departure; (5) the assumption of
spherical bubbles or bubble segments could lead to big
errors in force evaluations in engineering practice, espe-
cially for the liquid inertia force.

The application of the developed method should not be
limited to the cases studied herein. It can be used to system-
atically study the boiling phenomena or to verify theoreti-
cal models, A further improvement of Eq. (10) is possible
and essential for simulating the bubble shapes more effi-
ciently and more accurately.
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